

Towards a Citizen Science Pb Monitoring Program

Joseph Goodwill Ph.D., Sean Montgomery Ph.D., John E. Gaughan AWWA ACE17, Philadelphia, PA

Pb testing strips are available to allow a consumer to test the lead levels coming from a tap. However, results may be difficult to interpret, are not publically available and only provide a binary level of information. We propose that results from these strips can be leveraged by using computer vision and the citizen science community (see Figure 1).

Methods

Saint Francis University

- DI and tap water matrices spiked with Pb(II). Concentrations confirmed via GFAA.
- Exposed Pb test strips to spiked samples following manufacture's directions. Strips then scanned.
- MATLAB algorithm developed to quantify pixel value across scanned strip lines
- Algorithm results compared to human-eye evaluation and actual Pb concentration.

Results

- MATLAB code successfully reads strip
- Computer vision much better than human eyes
- Strip results tend to under represent Pb level (for this specific study water). Also significant variability.
- Much more testing needed
- Other solutes impact strip performance (DI v. tap)
- Mobile application may substantially reduce testing cost and enable optimization of Pb analytical resource deployment

- Additional testing on varied water quality matrices • Port MATLAB to OpenCV, and finish mobile application development
- Create backend database
- Surrogate parameters (iron, copper, etc.)
- Assess ways to overcome strip limitations

Study Tap Water Quality		
Parameter	Value	Units
pН	7.5	na
Temp.	21	Cel
Cond.	385	μS/cm
Manganese	0.02	mg/L
Iron	0.09	mg/L
Free Chlorine	0.2	mg/L
Alkalinity	127	mg/L CaCO ₃
Table 1: Tap water quality parameters		